

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 256-263 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209256263 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 256

do {

critical section

}while(TRUE);

A Theory of Synchronisation using Semophores

Suveetha.V, Sree Dharshni.V.S, Akshaya.A, Dr.M. Sujithra

M.C.A,M.Phil.,PhD, Dr.A.D. Chitra M.C.A, M.Phil.,PhD,
2nd year , m.sc. Software systems (integrated), coimbatore institute of technology, coimbatore

Assistantprofessor, , department of software systems, coimbatore institute of technology,

--

Date of Submission: 10-11-2020 Date of Acceptance: 24-11-2020

--

ABSTRACT: In a multi process system when

two or more process running at a same time

accessing the same shared resource may lead to the

inconsistency of data. synchronization between

more than one process is needed so that there will

no collision between two processes . process

synchronization is used to handle concurrent access

to shared data. Semaphore is one of the basic

synchronization primitive where it has only two

operations wait and signal .it is initialized to non-

negative value. This paper introduces a formal

definition of semaphore and illustrates a general

theory of synchronization an various problem and

solutions that come under

semaphoresynchronization.

Keywords: process , mutex , wait , signal ,

synchronization, critical section.

I. INTRODUCTION
In the operating system, process is a task

that is currently under execution.During the

execution it undergoes few states like new, ready,

running, waiting, terminate etc. A process is said to

be co-operating if the execution of a process can

affect or be affected by the execution of other

processes. Process synchronization is a method or

way to coordinate two or more processes running at

same time to avoid data collision. Data

synchronization which is important during the

process execution, data synchronization means a

way to keep multiple data copies in coherence with

one another. Process synchronization is commonly

used to execute data synchronization. The need

arises especially in the simulation of many process

at same time. It is been used frequently when

multiple process need to execute simultaneously.

The other purpose is the coordination of process

interactions in an operating system.

Critical section:

In a program, there are four important section like

entry section, critical section , exit section,

remainder section. A critical section is segment of

code which can be accessed by a signal process at a

same point of time.

Fig-1 critical section

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 256-263 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209256263 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 257

The entry to the critical section and the exit from

the critical section is handled by the wait() and the

signal() function . Here only a single process can be

executed and the other process has to wait for its

turn.

II. METHODOLOGY
Three main condition to solve the critical section

problem

Mutual exclusion:Out of a group of cooperating

processes, only one process can be in its critical

section at a specific time.

Process:If no process is in its critical section, and if

one or more threads want to execute their critical

section then any one of these threads must be

allowed to get into its critical section.

Bounded waiting:After a process makes a request

for getting into its critical section, there is a limit

for how many other processes can get into their

critical section, before this process's request is

granted. So after the limit is reached, system must

grant the process permission to get into its critical

section.

Mutex lock:A concept related to the semaphore,

mutex is a programming flag used to grab and

release the an object. Mutexes are just simple locks

obtained before entering its critical section and then

releasing it. Since only one thread is in its critical

section at any given time, there are no race

conditions, and data always remain consistent.It has

some disadvantage like If a thread obtains a lock

and goes to sleeporitis pre-empted, then the other

thread may not able to move forward.

This may lead to starvation. It can't be locked or

unlocked from a different context than the one

thatacquiredit. Only one thread should be allowed

in the critical section at a time. Thenormal

implementation may lead to busy waiting state,

which wastes CPUtime.

III. SEMAPHORE
SEMAPHORES :For signalling all means of

communication (execution of process)a special

variable is used , and this special variable is called

semaphores .(i.e) an integer value ..The two main

atomic operations that can be performed on

semaphores are :Initialize,Decrement (sem wait

),Increment (sem signal)here is no way to

manipulate semaphores other than these two

operations .A Semaphore can be initialised to an

non-negative integer value . The Decrement

operations may result in the blocking of process

.The Increment operations may result in

unblocking of process.

Wait and Signal are the two operations used for

process synchronization .

Wait :The wait operation decrements the value of

the semaphore (S). If the value of the semaphore

S is negative , then no operation is performed , else

the process continues execution.

Signal :The signal operation increments the

semaphore value S .

Wait(S)

{

S--;

}

signal (S)

{

S++ ;

}

Fig-2 wait and signal

TYPES OF SEMAPHORES :

Counting Semaphores :

This type of Semaphores uses a count

that helps tasks to be acquired or released

various times . If initially count is 0 , then the

semaphore is created in the unavailable state and if

count value is greater than 0 , then the

semaphore is created in the available state.

Binary Semaphores :

The Binary Semaphore is quite similar to

the Counting Semaphores , but it may only take

values 0 and 1 .In this type of Semaphore , the

wait operation works only when the semaphore

value is equal to 1 (S=1) and the signal

operation works when semaphore value is equal to

0 (S=0).

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 256-263 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209256263 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 258

void semWait (semaphore s)

{

s.count ++ ;

if (s.count < 0) {

// place the process in s.queue ;

// block the process ;

}

}

void semSignal (semaphore s)

{

s.count ++ ;

if (s.count <= 0)

//remove process from s.queue ;

//place process on ready list ;

}

}

void semWaitB(binary_semaphore s)

{

if (s.value == one)

s.value=zero ;

else {

// place the process in s.queue ;

// block the process ;

}

}

void semSignalB(semaphore s)

{
if (s.queue is empty ())

s.value = one ;

else {

//remove process from s.queue ;

//place process on ready list ;

}

}

Pseudocode for counting semaphore :

Fig-3 semwait and semsignal

Pseudocode for binary semaphore :

Fig-4 semwait and semsignal

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 256-263 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209256263 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 259

void producer()

{
mutex=wait(mutex);

full=signal(full);

empty=wait(empty);

x++;

printf("\nProducer produces theitem

%d",x);

printf("\nRemaining slots in the buffer
=%d ",empty);

mutex=signal(mutex);

}

}

mutex=signal(mutex);

item consumes printf("\nConsumer

%d",x);

x--;

void consumer()

{
mutex=wait(mutex);

full=wait(full);

empty=signal(empty);

IV. PROPOSED SOLUTION TO

SYNCHRONIZATION
Producer Consumer Problem : It is also known

as Bounded Buffer problem.We have a buffer of N

fixed size. One or more producer are generating

data and placing it in the buffer .A consumer can

take items out of the buffer and can consume them

.The producer should produce data only when the

buffer is not full. The consumer should consume

data only when the buffer is not empty. The

producer and consumer should not access the

buffer at the sametime.

Fig-5 producer

Fig-6 consumer

Inference: When producer produces an item then

the value of “empty” is reduced by 1 because one

slot

willbefillednow.Thevalueofmutexisalsoreducedtopr

eventconsumertoaccessthebuffer.

Now,theproducerhasplacedtheitemandthusthevalue

of“full”is increasedby1.Thevalue

ofmutexisalsoincreased

by1becausethetaskofproducerhasbeencompletedand

consumer can access thebuffer.

Astheconsumerisremovinganitemfrombuffer,theref

orethevalueof“full”is reducedby1 and the value is

mutex is also reduced so that the producer cannot

access the buffer at this moment. Now, the

consumer has consumed the item, thus increasing

the value of “empty”by

1. The value of mutex is also increased so that

producer can access the buffernow.

Readers Writers Problem :

If two readers access the object at the

same time there is no problem. However if two

writers or a reader and writer access the object at

the same time, there may be problems. To solve this

situation, a writer should get exclusive access to an

object i.e. when a writer is accessing the object, no

reader or writer may access it. However, multiple

readers can access the object at the sametime.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 256-263 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209256263 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 260

void addReader(struct semaphore *s)

{

if (s->mutex == 0 && s->readcount == 0)

{

printf("\nSorry, File open in Write mode.\nNew Reader

added to queue.\n");

s->readwait++;

}

else

{

printf("\nReader Process added.\n");

s->readcount++;

s->mutex--;

}

return ;

}

void addWriter(struct semaphore *s)

{

if(s->mutex==1)

{
s->mutex--

; s-

>write=1;

printf("\nWriter Process added.\n");

}
else if(s->write) printf("\nSorry, Writer already

operational.\n");

else printf("\nSorry, File open in Read mode.\n");

return ;}
Fig-7 addReader and addWriter

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 256-263 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209256263 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 261

Fig-8 remReader and remWriter

Inference:

Aresourceissharedamong

manyprocesses,eachbelongingtooneoftwoprocesses.

Theyare either reader or writer. In this problem,

any number of readers can read from the shared

resource simultaneously, but at a time only one

writer can write to the shared resource. Also, when

a writer is writing data to the resource, at that time

no other process can access the resource. Readers

do not write, readers only read. If a process is

writing, no other process can readit.

V. RESULT OBTAINED
Producer consumer problem:

Here there is a buffer of ns lots which

stores the data and there are two process namely

producer the job of producer is to produce the item

and place it in the buffer it cannot produce when the

bufferis empty.The job of consumer is to take the

items ou of the bufferitcanonlytakewhen the buffer

has at least one item. It they only function one at a

time.

void remReader(struct semaphore *s)

{

if(s->readcount == 0)

printf("\nNo readers to remove.\n");

else

{

printf("\nReader Removed.\n");

s->readcount--;

s->mutex++;

}

return ;

}

void remWriter(struct semaphore *s)

{

if(s->write==0)

printf("\nNo Writer to Remove");

else

{

printf("\nWriter Removed\n");

s->mutex++;

s->write=0;

if(s->readwait!=0)

{

s->mutex-=s->readwait;

s->readcount=s->readwait;

s->readwait=0;

printf("%d waiting Readers Added.",s->readcount);

}

}

}

continue;

}

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 256-263 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209256263 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 262

Reader writer problem:

Readinginformationfromthedatabasewillno

tcauseaproblemsincenodataischanged.The problem

lies in writing information to the data base .If no

constraints are put on access to the data base, data

may change at any moment. By the time a reading

process displays the result of a request for

information to the user, the actual data in the data

base may have changed. What if, for instance, a

process reads the number of available seats on a

flight, finds a valueof one,and reports it to the

customer. Before the customer has a chance to

make their reservation, another process makes a

reservation for another customer, changing the

number of available seats tozero.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 256-263 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209256263 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 263

VI. SUMMARY
In operating systems, when two or more

process run at the same time . There is chance for

data collision. To avoid this data synchronization

plays an important role . It can be achieved using

process synchronization. This process

synchronization is used to manage the concurrent

access to the shared data . One of the basic tool

used is semaphore. Semaphore synchronization is

the method or way to coordinate two or more

processes running at the same time to avoid data

collision. There are two operations used wait and

signal and it is initialized to non negative value.

Mainly there are two problems producer consumer

problem and reader writer problem. The other

purpose is the coordination of process interactions

in the operatingsystem.

VII. CONCLUSION
Operating Systems play an important role

in system performance. It is said to be a set of

programs that manages the computer hardware and

some application software. Here We have

introduced a formal definition and the

synchronization tool called semaphore, which

recovers one of the main issues in operating

systems (i.e.,) concurrent program executions.Our

purpose is to synchronize the process so that each

data gets a mutually exclusive access to the shared

cresources. This will be achieved through a

synchronization tool called semaphore, which

allows only a single process at a time to access the

data and send its data successfully without any

collision with other data. Further our work includes

the possible applications of the semaphore

synchronization and optimization of thecode.

REFERENCES
[1]. Kartik Pandya, “Network Structure or

Topology”, International Journal ofAdvance

Research in Computer Science and

Management Studies, Volume 1, Issue 2,

July 2013

[2]. Dhananjay M.DhamDhere, “Operating

Systems A Concept – Based Approach”,

3rdEdition, McGraw Hill Education (India)

Private Limited, New Delhi,2003

[3]. David P. Reed and Rajendra K. Kanodia.

Synchronization with eventcounts and

sequencers. Communications of the ACM,

22(2), February 1979. Proposesdifferent

synchronizationmechanism.

[4]. K. A. Sumitradevi, N. P. Banashree,

“Operating Systems”, second edition, SPD

publications.

[5]. Brian P. Crow, Jeong Geun Kim, Prescott T.

Sakai,” IEEE 802.11 WirelessLocal Area

Networks”, IEEE Communications

Magazine, September1997.

[6]. William Stallings, “Operating Systems:

Internals and Design Principles”, seventh

Edition, Pearson Publications.

